Semicontinuous Bioreactor Production of Recombinant Butyrylcholinesterase in Transgenic Rice Cell Suspension Cultures

نویسندگان

  • Jasmine M. Corbin
  • Bryce I. Hashimoto
  • Kalimuthu Karuppanan
  • Zachary R. Kyser
  • Liying Wu
  • Brian A. Roberts
  • Amy R. Noe
  • Raymond L. Rodriguez
  • Karen A. McDonald
  • Somen Nandi
چکیده

An active and tetrameric form of recombinant butyrylcholinesterase (BChE), a large and complex human enzyme, was produced via semicontinuous operation in a transgenic rice cell suspension culture. After transformation of rice callus and screening of transformants, the cultures were scaled up from culture flask to a lab scale bioreactor. The bioreactor was operated through two phases each of growth and expression. The cells were able to produce BChE during both expression phases, with a maximum yield of 1.6 mg BChE/L of culture during the second expression phase. Cells successfully regrew during a 5-day growth phase. A combination of activity assays and Western blot analysis indicated production of an active and fully assembled tetramer of BChE.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving Pharmaceutical Protein Production in Oryza sativa

Application of plant expression systems in the production of recombinant proteins has several advantages, such as low maintenance cost, absence of human pathogens, and possession of complex post-translational glycosylation capabilities. Plants have been successfully used to produce recombinant cytokines, vaccines, antibodies, and other proteins, and rice (Oryza sativa) is a potential plant used...

متن کامل

Expression of Recombinant Human Bche in the Milk of Transgenic Mice

Human butyrylcholinesterase (huBChE) has been successfully used as prophylaxis in animal models to prevent intoxication as a result of exposure to Organophosphate (OP) agents. Since large quantities of enzyme would be required for prophylaxis or treatment, we explored the production of recombinant huBChE (rc-huBChE) in the milk of transgenic animals. A DNA expression vector containing the huBCh...

متن کامل

Efficient Secretion of Recombinant Proteins from Rice Suspension-Cultured Cells Modulated by the Choice of Signal Peptide

Plant-based expression systems have emerged as a competitive platform in the large-scale production of recombinant proteins. By adding a signal peptide, αAmy3sp, the desired recombinant proteins can be secreted outside transgenic rice cells, making them easy to harvest. In this work, to improve the secretion efficiency of recombinant proteins in rice expression systems, various signal peptides ...

متن کامل

Improvement of Hypericin and Hyperforin Production Using Zinc and Iron Nano-oxides as Elicitors in Cell‏ Suspension Culture of St John's wort (Hypericum perforatum L.)

Zinc and iron nano-oxides (100 ppb) were promoted the hypericin and hyperforin production in Hypericum perforatum cell suspension culture. High performance liquid chromatography method was used for detectection and identification of hypericin and hyperforin in H. perfuratum cell suspension cultures elicited with different concentrations of zinc and iron nano-oxide (0, 50, 100 and 150 ppb) after...

متن کامل

A Double Built-In Containment Strategy for Production of Recombinant Proteins in Transgenic Rice

Using transgenic rice as a bioreactor for mass production of pharmaceutical proteins could potentially reduce the cost of production significantly. However, a major concern over the bioreactor transgenic rice is the risk of its unintended spreading into environment and into food or feed supplies. Here we report a mitigating method to prevent unwanted transgenic rice spreading by a double built-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Frontiers in plant science

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016